Linear Algebra [KOMS120301] - 2023/2024

13.3 - Properties of Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (November 2023)

1 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-27-0)

KORK EXTERNE ROAD

Learning objectives

After this lecture, you should be able to:

1. explain various properties of each of linear transformations in a vector space.

2 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

YO A REPART AND YOUR

Properties of Matrix Transformations

(page 270 of Elementary LA Applications book)

3 / 28 c [Dewi Sintiari/CS Undiksha](#page-0-0)

 Ω

Compositions of matrix transformation

Let:

- \bullet τ_{A} : a matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{k}
- \bullet $\tau_{\mathcal{B}}$: a matrix transformation from \mathbb{R}^k to \mathbb{R}^m

Let $\mathbf{x} \in \mathbb{R}^n$, and defines transformation:

$$
\mathbf{x} \stackrel{\mathcal{T}_A}{\longrightarrow} \mathcal{T}_A(\mathbf{x}) \stackrel{\mathcal{T}_B}{\longrightarrow} \mathcal{T}_B(\mathcal{T}_A(\mathbf{x}))
$$

defines the transformation from \mathbb{R}^n to \mathbb{R}^m .

It is called the composition of T_B with T_A and is denoted by $T_B \circ T_A$. So:

$$
(\mathcal{T}_B \circ \mathcal{T}_A)(\mathbf{x}) = \mathcal{T}_B(\mathcal{T}_A(\mathbf{x}))
$$

4 / 28 (c) Dewi Sintiari / CS Undiksha

KORKAR KERKER SAGA

Compositions of matrix transformation

The composition is a matrix transformation, since:

$$
(\mathcal{T}_B \circ \mathcal{T}_A)(\mathbf{x}) = \mathcal{T}_B(\mathcal{T}_A(\mathbf{x})) = B(\mathcal{T}_A(\mathbf{x})) = B(A\mathbf{x}) = (BA)\mathbf{x}
$$

meaning that the result of the composition to x is obtained by multiplying x with BA on the left.

This is denoted by:

$$
T_B \circ T_A = T_{BA}
$$

5 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \pmod{2} \mathbf{A} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A}$

 200

Composition of three transformations

Compositions can be defined for any finite succession of matrix transformations whose domains and ranges have the appropriate dimensions. For instance, given:

$$
\mathcal{T}_A: \mathbb{R}^n \to \mathbb{R}^k, \ \mathcal{T}_B: \mathbb{R}^k \to \mathbb{R}^\ell, \mathcal{T}_C: \mathbb{R}^\ell \to \mathbb{R}^m
$$

we can define the composition:

$$
(\mathcal{T}_C \circ \mathcal{T}_B \circ \mathcal{T}_A) : \mathbb{R}^n \to \mathbb{R}^m
$$

by:

$$
(T_C \circ T_B \circ T_A)(\mathbf{x}) = T_C(T_B(T_A(\mathbf{x})))
$$

It can be shown that this is a matrix transformation with standard matrix CBA, and:

$$
T_C \circ T_B \circ T_A = T_{CBA}
$$

6 / 28 c [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

Notation

We can write the standard matrix for transformation $\,\overline{ \,T}:\mathbb{R}^n \rightarrow \mathbb{R}^m$ without specifying the name of the standard matrix.

It is often written as $[T]$.

For instance,

- $T(x) = [T]x$
- $[T_2 \circ T_1] = [T_2][T_1]$
- $[T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$

KORK EXTERNE ROAD

Composition is not commutative

Example

Let:

- \bullet $\mathcal{T}_1: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the line $y = x;$
- $\mathcal{T}_2 : \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto the y-axis.

Geometrically, both transformations have different effect on x

8 / 28 (c) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A}$

 2990

Composition is not commutative (cont.)

Algebraically, we can compute:

$$
\begin{bmatrix} T_1 \circ T_2 \end{bmatrix} = \begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

$$
\begin{bmatrix} T_2 \circ T_1 \end{bmatrix} = \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}
$$

Clearly, $[T_1 \circ T_2] \neq [T_2 \circ T_1]$.

9 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

YO A YOU REAKEN REACH

Composition of rotation is commutative Example

Given :

$$
\mathcal{T}_1:\mathbb{R}^2\to\mathbb{R}^2\ \ \text{and}\ \ \mathcal{T}_2:\mathbb{R}^2\to\mathbb{R}^2
$$

the matrix operators that rotate vectors about the origin through the angles θ_1 and θ_2 respectively.

So, the operation:

$$
\mathcal{T}_2 \circ \mathcal{T}_1(\mathbf{x}) = \mathcal{T}_2(\mathcal{T}_1(\mathbf{x}))
$$

first rotates x through the angle θ_1 , then rotates $T_1(\mathbf{x})$ through the angle θ_2 .

Hence, $(T_2 \circ T_1)(x)$ defines rotation of x through the angle $\theta_1 + \theta_2$.

Composition of rotation is commutative (cont.)

In this case, we have:

$$
[T_1] = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \text{ and } [T_2] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}
$$

We show that: $[T_2 \circ T_1] = [T_2][T_1]$

Note that
$$
[T_2 \circ T_1] = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}
$$

Furthermore:

$$
[T_2][T_1] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix}
$$

=
$$
\begin{bmatrix} \cos \theta_2 \cos \theta_1 - \sin \theta_2 \sin \theta_1 & -(\cos \theta_2 \sin \theta_1 + \sin \theta_2 \cos \theta_1) \\ \sin \theta_2 \cos \theta_1 + \cos \theta_2 \sin \theta_1 & -\sin \theta_2 \sin \theta_1 + \cos \theta_2 \cos \theta_1 \end{bmatrix}
$$

=
$$
\begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}
$$

=
$$
[T_2 \circ T_1]
$$

It can be easily seen that $[T_2 \circ T_1] = [T_1 \circ T_2]$ (hence, commutative).

11 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

A D A A P A B A B A D A A A A A B A A A A A

Read Example 3 and Example 4 (page 272-273)

12 / 28 (C) Dewi Sintiari / CS Undiksha

K ロ K イロ K K ミ K X ミ K X X Y Y Q Q C

One-to-one matrix transformation

A matrix transformation $\mathcal{T}_A:\mathbb{R}^n\to\mathbb{R}^m$ is said to be one-to-one if \mathcal{T}_A maps distinct vectors (points) in \mathbb{R}^n into distinct vectors (points) in \mathbb{R}^m .

Equivalent statements:

- T_A is one-to-one if \forall b in the range of A, there is exactly one vector $\mathbf{x} \in \mathbb{R}^n$, s.t. $\mathcal{T}_A \mathbf{x} = \mathbf{b}$.
- T_A is one-to-one if the equality $T_A(\mathbf{u}) = T_A(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$.

13 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

 200

Examples: one-to-one and not one-to-one transformations

Rotation operators on \mathbb{R}^2 are one-to-one.

since distinct vectors that are rotated through the same angle have distinct images.

The orthogonal projection of \mathbb{R}^2 onto the x-axis is not one-to-one.

since it maps distinct points on the same vertical line into the same point.

 \triangle Figure 4.10.6 Distinct vectors **u** and **v** are rotated into distinct vectors $T(u)$ and $T(\mathbf{v})$.

 \triangle Figure 4.10.7 The distinct points P and Q are mapped into the same point M .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

 Ω

14 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

Kernel and range

If $\mathcal{T}_A:\mathbb{R}^n\to\mathbb{R}^m$ is a matrix transformation, then the set of all vectors in $RRⁿ$ that T_A maps into 0 is called the kernel of T_A and is denoted by $ker(T_A)$, i.e.:

$$
\text{ker}(\,\mathcal{T}_A)=\{\textbf{x}\in\mathbb{R}^n\text{ s.t. }A\textbf{x}=\textbf{0}\}
$$

The set of all vectors in \mathbb{R}^m that are images under this transformation of at least one vector in \mathbb{R}^n is called the range of \mathcal{T}_A and is denoted by $R(T_A)$, i.e.:

$$
R(T_A) = \{ \mathbf{b} \in \mathbb{R}^m \text{ s.t. } \exists \mathbf{x} \in \mathbb{R}^n, \text{ where } A\mathbf{x} = \mathbf{b} \}
$$

In brief:

 $ker(T_A)$ = null space of A $R(T_A)$ = column space of A

15 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

A DIA K PARA SA A SA A CA A CA SA SA SA PARA SA

Matrix - linear system - transformation

Let A be an $(m \times n)$ matrix.

Three ways of viewing the same subspace of \mathbb{R}^n :

- Matrix view: the null space of A
- System view: the solution space of $Ax = 0$
- Transformation view: the kernel of T_A

Three ways of viewing the same subspace of \mathbb{R}^m :

- Matrix view: the column space of A
- System view: all $\mathbf{b} \in \mathbb{R}^m$ for which $A\mathbf{x} = \mathbf{b}$ is consistent
- Transformation view: the range of T_A

16 / 28 (C) Dewi Sintiari / CS Undiksha

KORK EXTERNE ROAD

Read Example 5 and Example 6 on page 275.

17 / 28 © [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

One-to-one matrix operator

Let $\mathcal{T}_A: \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one matrix operator. So, A is invertible. The inverse operator or the inverse of T_A is defined as:

 $\mathcal{T}_{A^{-1}}: \mathbb{R}^n \to \mathbb{R}^n$

In this case:

 $T_A(T_{A^{-1}}(\mathbf{x})) = AA^{-1}\mathbf{x} = I\mathbf{x} = \mathbf{x}$ or, equivalently $T_A \circ T_{A^{-1}} = T_{AA^{-1}} = T_I$ $T_{A^{-1}}(T_A(\mathbf{x})) = A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$ or, equivalently $T_{A^{-1}} \circ T_A = T_{A^{-1}A} = T_I$

 T_A maps x to w and $T_{A^{-1}}$ maps w back to x, i.e., $T_{A^{-1}}(w) = T_{A^{-1}}(T_A(x)) = x$ **A D A A P A B A B A D A A A A A B A A A A A**

18 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

Read Example 7 and Example 8 on page 276.

19 / 28 © [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

Conclusion

THEOREM 4.10.2 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible
- (h) $Ax = 0$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A**x** = **b**$ is consistent for every $n \times 1$ matrix **b**.
- (f) $A x = b$ has exactly one solution for every $n \times 1$ matrix **b**.
- (g) $det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (i) The column vectors of A span R^n .
- (k) The row vectors of A span R^n .
- (l) The column vectors of A form a basis for R^n .
- The row vectors of A form a basis for R^n . (m)
- A has rank n (n)
- A has nullity 0. \overline{a}
- The orthogonal complement of the null space of A is R^n . (p)
- (q) The orthogonal complement of the row space of A is $\{0\}$.
- The kernel of T_A is $\{0\}$. (r)
- (s) The range of T_A is R^n .
- T_A is one-to-one. (t)

경기

 QQ

Geometry of Matrix Operators on \mathbb{R}^2

(page 280 of Elementary LA Applications book)

21 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 Ω

to be continued...

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

23 / 28 © [Dewi Sintiari/CS Undiksha](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トッ 君

 299

24 / 28 © [Dewi Sintiari/CS Undiksha](#page-0-0)

メロトメ 御 メメモトメ 差 トー 差し

 299

Exercise

Given a transformation $\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ which is multiplication by an invertible matrix. Determine the image of:

- 1. A straight line
- 2. A line through the origin
- 3. Parallel lines
- 4. The line segment joining points P and Q
- 5. Three points lie on a line

Task:

Divide yourselves into 5 groups, and examine each of the question!

A DIA K PARA SA A SA A CA A CA SA SA SA PARA SA

Exercises

Question 1

Given a transformation matrix:

$$
A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}
$$

Find the image of line $y = 2x + 1$ under the transformation.

Question 2

Given a transformation matrix:

$$
A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}
$$

Find the image of the unit square on the *first quadrant* under the transformation.

26 / 28 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

Exercises

Determine the image of the unit square under the following transformation:

- Reflection about the y-axis
- Reflection about the x-axis
- Reflection about the line $y = x$
- Rotation about the origin through a positive angle θ
- Compression in the x-direction with factor k with $0 < k < 1$
- Compression in the y-direction with factor k with $0 < k < 1$
- Expansion in the x-direction with factor k with $k > 1$
- Expansion in the y-direction with factor k with $k > 1$
- Shear in the x-direction with factor k with $k > 0$
- Shear in the x-direction with factor k with $k < 0$
- Shear in the y-direction with factor k with $k > 0$
- Shear in the y-direction with factor k with $k < 0$

YO A HE YEAR A BY YOUR

This is the end of slide...

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q